الدحاضرة الرابعة

Newton-Raphson Power Flow Solution

Because of its quadratic convergence, Newton's method is mathematically superior to Gauss-Seidel method and is less prone to divergence with ill-conditioned problems. For large power system, the newton-Raphson method is found to be more efficient and practical. The number of iteration required to obtain a solution is independent of system size, but more functional evaluations are required at each iteration. Since the power flow problem real power and voltage magnitude are specified for voltage-controlled buses, the power flow equation is formulated in polar form.
For the typical bus of the power system shown in Figurer 1-7, the current entering bus i is given by (1-24).This equation can be rewritten in terms of the bus admittance matrix as

$$
\begin{equation*}
I_{i}=\sum_{j=1}^{N} Y_{i j} V_{j} \tag{1-48}
\end{equation*}
$$

In the above equation, j includes bus \boldsymbol{i}, Expressing this equation in polar form, we have

$$
\begin{equation*}
I_{i}=\sum_{j=1}^{N}\left|Y_{i j}\right|\left|V_{j}\right| \angle \theta_{i j}+\delta_{j} \tag{1-49}
\end{equation*}
$$

The complex power at bus i is

$$
\begin{equation*}
P_{i}-j Q_{i}=V_{i}^{*} I_{i} \tag{1-50}
\end{equation*}
$$

Substituting from (1-49) for I_{i} in (1-50).

$$
\begin{equation*}
P_{i}-j Q_{i}=\left|V_{i}\right| \angle-\delta_{i} \sum_{j=1}^{N}\left|Y_{i j}\right|\left|V_{j}\right| \angle \theta_{i j}+\delta_{j} \tag{1-51}
\end{equation*}
$$

Separating the real and imaginary parts.

P_{i}	$=\sum_{j=1}^{N}\left\|V_{i}\right\|\left\|V_{j}\right\|\left\|Y_{i j}\right\| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)$
Q_{i}	$=-\sum_{j=1}^{N}\left\|V_{i}\right\|\left\|V_{j}\right\|\left\|Y_{i j}\right\| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)$

Eq. (1-52) and (1-53) constitute a set on nonlinear algebraic equations in terms of the independent variables, voltage magnitude in per unit, and phase angle in radians. We have two equations for each load bus, given by (1-52) and (1-53). Expanding (1-52) and (1-53) in Taylor's series about the initial estimate and neglecting all higher order terms results in the following set of linear equations.

In the above equation, bus 1 is assumed to be the slack bus. The Jacobian matrix gives the linearized relationship between small changes in voltages angle $\delta_{i}^{(k)}$ and voltage magnitude $\Delta\left|V_{i}^{(k)}\right|$ with small changes in real and reactive power $\partial P_{i}^{(k)}$ and $\partial Q_{i}^{(k)}$.
Elements for the Jacobian matrix are the partial derivatives of (1-52) and (1-53), evaluated at $\Delta \delta_{i}^{(k)}$ and $\Delta\left|V_{i}^{(k)}\right|$. In short form, It can be written as

$$
\left[\begin{array}{l}
\Delta P \tag{1-54}\\
\Delta Q
\end{array}\right]=\left[\begin{array}{l}
J_{1} J_{2} \\
J_{3} J_{4}
\end{array}\right]\left[\begin{array}{c}
\Delta \delta \\
\Delta|V|
\end{array}\right]
$$

For voltage-controlled buses, the voltage magnitude are known. Therefore, if m buses of the system are voltage controlled, m equations involving ΔQ and $\Delta|V|$ and the corresponding columns of the Jacobian matrix are eliminated. accordingly, there are $n-1$ real power constraints and $n-1-m$ reactive power constraints, and the Jacobian matrix is of order $(2 n-2-m) \times(2 n-2-m) . J_{1}$ is of the
order of $(n-1) \times(n-1) . J_{2}$ is of the order $(n-1) \times(n-1-m)$. J_{3} is of the order of $(\boldsymbol{n}-\mathbf{1}-\boldsymbol{m}) \times(\boldsymbol{n}-\mathbf{1})$, and \boldsymbol{J}_{4} is of the order of ($n-1-m) \times(n-1-m)$.

The diagonal and the off-diagonal elements of $\boldsymbol{J}_{\mathbf{1}}$ are

$$
\begin{equation*}
\frac{\partial P_{i}}{\partial \delta_{i}}=\sum_{j \neq i}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \tag{1-55}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial P_{i}}{\partial \delta_{j}}=-\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \quad j \neq i \tag{1-56}
\end{equation*}
$$

The diagonal and the off-diagonal elements of $\boldsymbol{J}_{\mathbf{2}}$ are

$$
\begin{equation*}
\frac{\partial P_{i}}{\partial\left|V_{i}\right|}=2\left|V_{i}\right|\left|Y_{i i}\right| \cos \theta_{i i}+\sum_{j \neq i}\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \tag{1-57}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial P_{i}}{\partial\left|V_{j}\right|}=\left|V_{i}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) j \neq i \tag{1-58}
\end{equation*}
$$

The diagonal and the off-diagonal elements of \boldsymbol{J}_{3} are

$$
\begin{equation*}
\frac{\partial Q_{i}}{\partial \delta_{i}}=\sum_{j \neq i}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \tag{1-59}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial Q_{i}}{\partial \delta_{j}}=-\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) j \neq i \tag{1-60}
\end{equation*}
$$

The diagonal and the off-diagonal elements of \boldsymbol{J}_{4} are

$$
\begin{equation*}
\frac{\partial Q_{i}}{\partial\left|V_{i}\right|}=-2\left|V_{i}\right|\left|Y_{i i}\right| \sin \theta_{i j}-\sum_{j \neq i}\left|V_{j}\right|\left|Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \tag{1-61}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial Q_{i}}{\partial\left|V_{j}\right|}=-\left|V_{i}\right|\left|Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \quad j \neq i \tag{1-62}
\end{equation*}
$$

The term $\Delta \boldsymbol{P}_{i}^{(k)}$ and $\Delta \boldsymbol{Q}_{i}^{(k)}$ are the difference between the scheduled and calculated values, known as the power residuals, given by

$$
\begin{equation*}
\Delta P_{i}^{(k)}=P_{i}^{s c h}-P_{i}^{(k)} \tag{1-63}
\end{equation*}
$$

$$
\begin{equation*}
\Delta Q_{i}^{(k)}=Q_{i}^{s c h}-Q_{i}^{(k)} \tag{1-64}
\end{equation*}
$$

The new estimates for bus voltages are

$\delta_{i}^{(k+1)}=\delta_{i}^{(k)}+\Delta \delta_{i}^{(k)}$	$(1-65)$
$\left\|V_{i}^{(k+1)}\right\|=\left\|V_{i}^{(k)}\right\|+\Delta\left\|V_{i}^{(k)}\right\|$	$(1-66)$

The procedure for power flow solution by the newton-Raphson method is as follows:

1. For load buses, where $P_{i}^{s c h}$ and $Q_{i}^{s c h}$ are specified, voltage magnitudes and phase angles are equal to the slack bus value, or 1.0 and 0.0, i.e., $\left|V_{i}^{(0)}\right|=1.0$ and $\delta_{i}^{(0)}=0.0$. For voltageregulated buses, where $\left|V_{i}\right|$ and $P_{i}^{s c h}$ are specified, phase angles are set equal to the slack bus angle, or 0 , i.e., $\delta_{i}^{(0)}=0$.
2. For load buses, $P_{i}^{(k)}$ and $Q_{i}^{(k)}$ are calculated from (1-52) and (153) and $\Delta P_{i}^{(k)}$ and $\Delta Q_{i}^{(k)}$ are calculated from (1-63) and (1-64)
3. For voltage -controlled buses, $P_{i}^{(k)}$ and $\Delta P_{i}^{(k)}$ are calculated from (1-52) and (1-63), respectively.
4. The elements of the Jacobian matrix $\left(J_{1}, J_{2}, J_{3}\right.$ and $\left.J_{4}\right)$ are calculated from (1-55)-(1-62).
5. The new voltage magnitudes and phase angles are computed from (1-65) and (1-66).
6. The process is continued until the residuals $\Delta P_{i}^{(k)}$ and $\Delta Q_{i}^{(k)}$ are less than the specified accuracy, i.e.,

$$
\begin{align*}
& \left|\Delta P_{i}^{(k)}\right| \leq \varepsilon \\
& \left|\Delta Q_{i}^{(k)}\right| \leq \varepsilon \tag{1-67}
\end{align*}
$$

FIG. 1-7 Newton-Raphson power-flow solution

The power flow solution by the newton-Raphson method is demonstrated in the following example.

Example 1-10

Obtain the power flow solution by Newton-Rahpson method for the system of Example 1-8

Figure (1-12) One-line diagram of Example 1-8 (impedances in pu on 100 MVA base)
(a) Line impedances are converted to admittances

$$
y_{12}=\frac{1}{0.02+j 0.04}=10-j 20
$$

Similarly, $y_{13}=10-j 30, y_{23}=16-j 32$. The admittances are on the network shown in Figure 1-12b.

Figure (1-12b) One-line diagram of Example 1-7 (admittances in pu on 100 MVA base)
This results in the bus admittance matrix

$$
Y_{b u s}=\left[\begin{array}{ccc}
20-\mathrm{j} 50 & -10+\mathrm{j} 20 & -10+\mathrm{j} 30 \\
-10+\mathrm{j} 20 & 26-\mathrm{j} 52 & -16+\mathrm{j} 32 \\
-10+\mathrm{j} 30 & 16+\mathrm{j} 3226-\mathrm{j} 62
\end{array}\right]
$$

Converting the bus admittance matrix to polar form with angles in radian yields

$$
Y_{b u s}=\left[\begin{array}{cc}
53.85165 \angle-1.9029 & 22.36068 \angle 2.034431 .62278 \angle 1.8925 \\
22.36068 \angle 2.0344 & 58.13777 \angle-1.10735 .7709 \angle 2.0344 \\
31.62278 \angle 1.8925 & 22.36068 \angle 2.034467 .23095 \angle-1.1737
\end{array}\right]
$$

From (1-52) and (1-53),

$$
\begin{equation*}
P_{i}=\sum_{j=1}^{N}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \tag{1-52}
\end{equation*}
$$

$$
\begin{equation*}
Q_{i}=-\sum_{j=1}^{N}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \tag{1-53}
\end{equation*}
$$

the expressions for real power at bus 2 and 3 and the reactive power at bus 2 are

$$
\begin{aligned}
& P_{2}=\left|V_{2}\right|\left|V_{1}\right|\left|Y_{21}\right| \cos \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+\left|V_{2}^{2}\right|\left|Y_{22}\right| \cos \theta_{22} \\
& \quad+\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right) \\
& P_{3}=\left|V_{3}\right|\left|V_{1}\right|\left|Y_{31}\right| \cos \left(\theta_{31}-\delta_{3}+\delta_{1}\right) \\
& \quad+\left|V_{3}\right|\left|V_{2}\right|\left|Y_{32}\right| \cos \left(\theta_{32}-\delta_{3}+\delta_{2}\right)+\left|V_{3}^{2}\right|\left|Y_{33}\right| \cos \theta_{33} \\
& \\
& Q_{2}=-\left|V_{2}\right|\left|V_{1}\right|\left|Y_{21}\right| \sin \left(\theta_{21}-\delta_{2}+\delta_{1}\right)-\left|V_{2}^{2}\right|\left|Y_{22}\right| \sin \theta_{22} \\
& \quad-\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
\end{aligned}
$$

Elements of the Jacobian matrix are obtained by taking partial derivatives of the above equations with respect to δ_{2}, δ_{3} and $\left|V_{2}\right|$.

$$
\frac{\partial P_{2}}{\partial \delta_{2}}=\left|V_{2}\right|\left|V_{1}\right|\left|Y_{21}\right| \sin \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
$$

$$
\frac{\partial P_{2}}{\partial \delta_{3}}=-\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
$$

$$
\frac{\partial P_{2}}{\partial\left|V_{2}\right|}=\left|V_{1}\right|\left|Y_{21}\right| \cos \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+2\left|V_{2}\right|\left|Y_{22}\right| \cos \theta_{22}
$$

$$
+\left|V_{3}\right|\left|Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
$$

$\frac{\partial P_{3}}{\partial \delta_{2}}=-\left|V_{3}\right|\left|V_{2}\right|\left|Y_{32}\right| \sin \left(\theta_{32}-\delta_{3}+\delta_{2}\right)$
$\frac{\partial P_{3}}{\partial \delta_{3}}=\left|V_{3}\right|\left|V_{1}\right|\left|Y_{31}\right| \sin \left(\theta_{31}-\delta_{3}+\delta_{1}\right)+\left|V_{3}\right|\left|V_{2}\right|\left|Y_{32}\right| \sin \left(\theta_{32}-\delta_{3}+\delta_{2}\right)$
$\frac{\partial P_{3}}{\partial\left|V_{2}\right|}=\left|V_{3}\right|\left|Y_{32}\right| \cos \left(\theta_{32}-\delta_{3}+\delta_{2}\right)$
$\frac{\partial Q_{2}}{\partial \delta_{2}}=\left|V_{2}\right|\left|V_{1}\right|\left|Y_{21}\right| \cos \left(\theta_{21}-\delta_{2}+\delta_{1}\right)+\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right)$
$\frac{\partial Q_{2}}{\partial \delta_{3}}=-\left|V_{2}\right|\left|V_{3}\right|\left|Y_{23}\right| \cos \left(\theta_{23}-\delta_{2}+\delta_{3}\right)$

$$
\begin{gathered}
\frac{\partial Q_{2}}{\partial\left|V_{2}\right|}=-\left|V_{1}\right|\left|Y_{21}\right| \sin \left(\theta_{21}-\delta_{2}+\delta_{1}\right)-2\left|V_{2}\right|\left|Y_{22}\right| \sin \theta_{22} \\
-\left|V_{3}\right|\left|Y_{23}\right| \sin \left(\theta_{23}-\delta_{2}+\delta_{3}\right)
\end{gathered}
$$

The load and generation expressed in per unit are

$$
\begin{aligned}
& S_{2}^{s c h}=-\frac{(400+j 250)}{100}=-4.0-j 2.5 \mathrm{pu} \\
& P_{3}^{s c h}=\frac{200}{100}=2.0 \mathrm{pu}
\end{aligned}
$$

The slack bus voltage is $V_{1}=1.05 \angle 0 \mathrm{pu}$, and the bus 3 voltage magnitude is $\left|V_{3}\right|=1.04 \mathrm{pu}$. Starting with an initial estimate of $\left|V_{2}^{(0)}\right|=1.0$ and $\delta_{2}^{(0)}=0.0$. and $\delta_{3}^{(0)}=0.0$, the power residuals are computed from (1-63) and (1-64)

$$
\begin{equation*}
\Delta P_{i}^{(k)}=P_{i}^{s c h}-P_{i}^{(k)} \tag{1-63}
\end{equation*}
$$

$$
\begin{equation*}
\Delta Q_{i}^{(k)}=Q_{i}^{s c h}-Q_{i}^{(k)} \tag{1-64}
\end{equation*}
$$

$$
\begin{aligned}
& \Delta P_{2}^{(0)}=P_{2}^{s c h}-P_{2}^{(0)}=-4.0-(-1.14)=-2.8600 \\
& \Delta P_{3}^{(0)}=P_{3}^{s c h}-P_{3}^{(0)}=2.0-(0.5616)=1.4384 \\
& \Delta Q_{2}^{(0)}=Q_{2}^{s c h}-Q_{2}^{(0)}=-2.5-(-2.28)=-0.2200
\end{aligned}
$$

Evaluation the elements of the Jacobian matrix with the initial estimate, the set of linear equations in the first iteration becomes

$$
\left[\begin{array}{c}
-2.86000 \\
1.4384 \\
-0.2200
\end{array}\right]=\left[\begin{array}{ccc}
54.28000 & -33.28000 & 24.86000 \\
-33.28000 & 66.04000 & -16.64000 \\
-27.14000 & 16.64000 & 49.72000
\end{array}\right]\left[\begin{array}{c}
\Delta \delta_{2}^{(0)} \\
\Delta \delta_{3}^{(0)} \\
\Delta\left|V_{2}^{(0)}\right|
\end{array}\right]
$$

Obtaining the solution of the above matrix equation, the new bus voltages in the first iteration are

$$
\begin{array}{ll}
\Delta \delta_{2}^{(0)}=-0.045263 & \delta_{2}^{(1)}=0+(-0.045263)=-0.045263 \\
\Delta \delta_{3}^{(0)}=-0.007718 & \delta_{3}^{(1)}=0+(-0.007718)=-0.007718 \\
\Delta\left|V_{2}^{(0)}\right|=-0.026548 & \left|V_{2}^{(1)}\right|=1+(-0.026548)=0.97345
\end{array}
$$

Voltage phase angles are in radians. For the second iteration, we have

$$
\left[\begin{array}{c}
-0.099218 \\
0.021715 \\
-0.050914
\end{array}\right]=\left[\begin{array}{ccc}
51.724675 & -31.765618 & 21.302567 \\
-32.981642 & 65.656383 & -15.379086 \\
-28.538577 & 17.402838 & 48.103589
\end{array}\right]\left[\begin{array}{c}
\Delta \delta_{2}^{(1)} \\
\Delta \delta_{3}^{(1)} \\
\Delta\left|V_{2}^{(1)}\right|
\end{array}\right]
$$

and
$\Delta \delta_{2}^{(1)}=-0.001795 \quad \delta_{2}^{(2)}=0=-0.045263+(-0.001795)=-0.04706$
$\Delta \delta_{3}^{(1)}=-0.000985 \quad \delta_{3}^{(2)}=-0.007718+(-0.000985)=-0.00870$
$\Delta\left|V_{2}^{(1)}\right|=-0.001767 \quad\left|V_{2}^{(2)}\right|=0.973451+(-0.001767)=0.971684$
For the third iteration, we have

$$
\left[\begin{array}{c}
-0.000216 \\
0.000038 \\
-0.000143
\end{array}\right]=\left[\begin{array}{ccc}
51.596701 & -31.693866 & 21.147447 \\
-32.933865 & 65.597585 & -15.351628 \\
-28.548205 & 17.396932 & 47.954870
\end{array}\right]\left[\begin{array}{c}
\Delta \delta_{2}^{(2)} \\
\Delta \delta_{3}^{(2)} \\
\Delta\left|V_{2}^{(2)}\right|
\end{array}\right]
$$

and
$\Delta \delta_{2}^{(2)}=-0.000038 \quad \delta_{2}^{(3)}=0=-0.047058+(-0.0000038)=-0.04706$
$\Delta \delta_{3}^{(2)}=-0.000985 \quad \delta_{3}^{(3)}=-0.008703+(-0.0000024)=-0.008705$
$\Delta\left|V_{2}^{(2)}\right|=-0.001767 \quad\left|V_{2}^{(3)}\right|=0.971684+(-0.0000044)=0.97168$
The solution converges in 3 iterations with a maximum power mismatch of 2.5×10^{-4} with $V_{2}=0.97168 \angle 2.696^{0}$ and $V_{3}=$ $1.04 \angle-0.4988^{0}$. from (1-52) and (1-53), the expressions for reactive power at bus 3 and the slack bus real and reactive power are

$$
\begin{gathered}
Q_{3}=-\left|V_{3}\right|\left|V_{1}\right|\left|Y_{31}\right| \sin \left(\theta_{31}-\delta_{3}+\delta_{1}\right) \\
\quad-\left|V_{3}\right|\left|V_{2}\right|\left|Y_{32}\right| \sin \left(\theta_{32}-\delta_{3}+\delta_{2}\right)-\left|V_{3}\right|^{2}\left|Y_{33}\right| \sin \theta_{33} \\
P_{1}=\left|V_{1}\right|^{2}\left|Y_{11}\right| \cos \theta_{11}+\left|V_{1}\right|\left|V_{2}\right|\left|Y_{12}\right| \cos \left(\theta_{12}-\delta_{1}+\delta_{2}\right) \\
\quad+\left|V_{1}\right|\left|V_{3}\right|\left|Y_{13}\right| \cos \left(\theta_{13}-\delta_{1}+\delta_{3}\right) \\
Q_{1}=-\left|V_{1}\right|^{2}\left|Y_{11}\right| \sin \theta_{11}-\left|V_{1}\right|\left|V_{2}\right|\left|Y_{12}\right| \sin \left(\theta_{12}-\delta_{1}+\delta_{2}\right) \\
\quad-\left|V_{1}\right|\left|V_{3}\right|\left|Y_{13}\right| \sin \left(\theta_{13}-\delta_{1}+\delta_{3}\right)
\end{gathered}
$$

Upon substituting, we have

$$
\begin{aligned}
& Q_{3}=1.4617 \mathrm{pu} \\
& P_{1}=2.1842 \mathrm{pu} \\
& Q_{1}=1.4085 \mathrm{pu}
\end{aligned}
$$

Finally the line flow are calculated in the same manner as the line flow calculated in Gauss-Seidel method described in Example 1-7, and the power flow diagram is as shown in Figure 1-13.

Figure (1-13) Power flow diagram of Example 1-8 (powers in MW and MVAr)

